Optimal Speed Control for Direct Current Motors Using Linear Quadratic Regulator
نویسنده
چکیده
Direct Current (DC) motors have been extensively used in many industrial applications. Therefore, the control of the speed of a DC motor is an important issue and has been studied since the early decades in the last century. This paper presents a comparison of time response specification between conventional ProportionalIntegral-Derivatives (PID) controller and Linear Quadratic Regulator (LQR) for a speed control of a separately excited DC motor. The goal is to determine which control strategy delivers better performance with respect to DC motor’s speed. Performance of these controllers has been verified through simulation using MATLAB/SIMULINK software package. According to the simulation results, liner quadratic regulator method gives the better performance, such as settling time, steady state error and overshoot compared to conventional PID controller. This shows the superiority of liner quadratic regulator method over conventional PID controller.
منابع مشابه
Enhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics
Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...
متن کاملDiscrete-time repetitive optimal control: Robotic manipulators
This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...
متن کاملCurrent Limitation and Speed Drop Minimization in Optimal-Efficiency of Induction Motors
In conventional direct torque control (DTC), the stator flux is usually kept constant by controlling the x-axis component of the stator voltage in the stator flux reference frame. The torque is then controlled by the y-axis component of stator voltage. In this scenario, the stator current does not exceed its permissible value. However, in the so-called optimal efficiency mode, the induction mot...
متن کاملMathematical Model and Vibration Analysis of Aircraft with Active Landing Gear System using Linear Quadratic Regulator Technique
This paper deals with the study and comparison of passive and active landing gear system of the aircraft and dynamic responses due to runway irregularities while the aircraft is taxying. The dynamic load and vibration caused by the unevenness of runway will result in airframe fatigue, discomfort of passengers and the reduction of the pilot’s ability to control the aircraft. One of the objectiv...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013